Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38611952

RESUMEN

Essential oils (EOs), including those from the Asteraceae plants, have been shown to have promising insecticidal activity against a wide range of insect pests. Understanding the mechanism of action of EOs is one of the studied aspects. The present study aimed to evaluate the effect of essential oils from Achillea millefolium, Santolina chamaecyparissus, Tagetes patula and Tanacetum vulgare on the settling and probing behavior of the bird cherry-oat aphid (Rhopalosiphum padi L.). In addition, the effect of the oils on the activity of such enzymes as trypsin, pepsin and α- and ß-glucosidase involved in the metabolism of proteins and sugars of the insects was examined. The leaf-choice bioassays demonstrated that the studied EOs limited aphid settling for at least 24 h after the treatment. The application of EOs also inferred with aphid probing behavior by reducing the total probing time and total duration of phloem sap ingestion. Aphids spent more time in the search phase due to an increase in the number and total duration of pathway phases. Moreover, the activity of the studied proteases and glucosidases significantly decreased in R. padi females exposed to the EOs. The enzyme inhibition varied depending on the applied oil and exposure time. Generally, the EOs with stronger deterrent activity also showed higher inhibitory effects. The results suggest that the tested EOs disrupt key digestive processes in R. padi which may be an important factor determining their aphicidal activity.


Asunto(s)
Áfidos , Asteraceae , Aceites Volátiles , Femenino , Animales , Aceites Volátiles/farmacología , Avena , Alimentos
2.
Life (Basel) ; 13(10)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37895400

RESUMEN

One of the inflammatory bowel diseases is Crohn's disease. Although this term has been used in the medical community since 1932, a significant increase in the number of publications occurs at the end of the 20th century and the beginning of the 21st century. Crohn's disease is a disease that cannot be fully cured. In many cases, it is chronic, i.e., recurrent. All preventive and therapeutic measures taken by doctors are aimed at inhibiting the development of the disease and minimizing the occurrence of any potential "side effects" resulting from the developing disease. One of the diagnostic methods is the qualitative and quantitative determination of metalloproteinases in inflammatory tissues and in the blood. The aim of the study was the quantitative and qualitative determination of metalloproteinases in inflammatory bowel tissues in patients diagnosed with Crohn's disease. The in vitro study was performed on surgical tissues from patients diagnosed with Crohn's disease. The results show that in inflammatory tissues the concentration of metalloproteinases -3, -7, -8, -9 was higher compared to tissues taken from the resection margin without signs of inflammation, defined as healthy. The experiment confirmed that the biochemical test, which is the determination of metalloproteinases in tissues, is a useful diagnostic tool to differentiate inflammatory from non-inflammatory tissues.

3.
Life (Basel) ; 13(10)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37895443

RESUMEN

Crohn's disease is a chronic inflammatory bowel disease that affects the ileum and/or large intestine. At the same time, it can also affect any other part of the human body, i.e., from the mouth to the anus. In Crohn's disease, the physiology and functioning of the epithelial barrier are inhibited due to the correlation of various factors, such as the environment, genetic susceptibility or intestinal microbiota. The symptoms are very troublesome and cause a significant reduction in quality of life, sometimes occurring with paralyzing permanent damage to the digestive tract, requiring enteral or parenteral nutrition throughout life. In order to make a proper and accurate diagnosis, an appropriately selected diagnostic path in a given clinical entity is necessary. Standard diagnostic methods are: laboratory examination, histopathological examination, endoscopic examination, X-ray, computed tomography, ultrasound examination and magnetic resonance imaging. Medical biology and the analysis of metalloproteinases have also proved helpful in diagnosing changes occurring as a result of Crohn's disease. Here we provide a thorough review of the latest reports on Crohn's disease and its genetic conditions, symptoms, morphology, diagnosis (including the analysis of Crohn's disease biomarkers, i.e., metalloproteinases) and treatment.

4.
Microb Cell Fact ; 22(1): 132, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474952

RESUMEN

BACKGROUND: Actinomycetes Streptomyces davaonensis and Streptomyces cinnabarinus synthesize a promising broad-spectrum antibiotic roseoflavin, with its synthesis starting from flavin mononucleotide and proceeding through an immediate precursor, aminoriboflavin, that also has antibiotic properties. Roseoflavin accumulation by the natural producers is rather low, whereas aminoriboflavin accumulation is negligible. Yeasts have many advantages as biotechnological producers relative to bacteria, however, no recombinant producers of bacterial antibiotics in yeasts are known. RESULTS: Roseoflavin biosynthesis genes have been expressed in riboflavin- or FMN-overproducing yeast strains of Candida famata and Komagataella phaffii. Both these strains accumulated aminoriboflavin, whereas only the latter produced roseoflavin. Aminoriboflavin isolated from the culture liquid of C. famata strain inhibited the growth of Staphylococcus aureus (including MRSA) and Listeria monocytogenes. Maximal accumulation of aminoriboflavin in shake-flasks reached 1.5 mg L- 1 (C. famata), and that of roseoflavin was 5 mg L- 1 (K. phaffii). Accumulation of aminoriboflavin and roseoflavin by K. phaffii recombinant strain in a bioreactor reached 22 and 130 mg L- 1, respectively. For comparison, recombinant strains of the native bacterial producer S. davaonensis accumulated near one-order less of roseoflavin while no recombinant producers of aminoriboflavin was reported at all. CONCLUSIONS: Yeast recombinant producers of bacterial antibiotics aminoriboflavin and roseoflavin were constructed and evaluated.


Asunto(s)
Antibacterianos , Eucariontes , Antibacterianos/farmacología , Riboflavina
5.
Molecules ; 28(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36903530

RESUMEN

Guelder rose (Viburnum opulus L.) is known for its health benefits. V. opulus contains phenolic compounds (flavonoids and phenolic acids), a group of plant metabolites with wide biological activities. They are good sources of natural antioxidants in human diets owing to their prevention of the oxidative damage responsible for many diseases. In recent years, observations have shown that an increase in temperature can change the quality of plant tissues. So far, little research has addressed the problem of the common impact of temperature and place of occurrence. Towards a better understanding of phenolics concentration that could indicate their potentials as therapeutic agents and towards predicting and controlling the quality of medicinal plants, the aim of this study was to compare phenolic acids and flavonoids content in the leaves of cultivation and wild collection V. opulus, and to examine the impacts of temperature and place of occurrence on their content and composition. Total phenolics were determined using the spectrophotometric method. Phenolic composition of V. opulus was determined using high-performance liquid chromatography (HPLC). The following hydroxybenzoic acids there were identified: gallic, p-hydroxybenzoic, syringic, salicylic, benzoic, as well as hydroxycinnamic acids: chlorogenic, caffeic, p-coumaric, ferulic, o-coumaric and t-cinnamic. The analysis of extracts from V. opulus leaves has indicated the presence of the following flavonoids: flavanols: (+)-catechin and (-)-epicatechin; flavonols: quercetin, rutin, kaempferol, myricetin; and flavones: luteolin, apigenin and chrysin. The dominant phenolic acids were p-coumaric and gallic acids. The major flavonoids found in V. opulus leaves were myricetin and kaempferol. Temperature and plant location affected the concentration of tested phenolic compounds. The present study shows the potential of naturally grown and wild V. opulus for the human.


Asunto(s)
Catequina , Vaccinium macrocarpon , Viburnum , Humanos , Quempferoles/metabolismo , Viburnum/química , Extractos Vegetales/química , Flavonoides/análisis , Hidroxibenzoatos/análisis , Fenoles , Antioxidantes
6.
Molecules ; 27(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36557985

RESUMEN

Microalgae are photosynthetic, eukaryotic organisms that are widely used in the industry as cell factories to produce valuable substances, such as fatty acids (polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), sterols (sitosterol), recombinant therapeutic proteins, carbohydrates, vitamins, phenolic compounds (gallic acid, quercetin), and pigments (ß-carotene, astaxanthin, lutein). Phenolic compounds and carotenoids, including those extracted from microalgae, possess beneficial bioactivities such as antioxidant capacity, antimicrobial and immunomodulatory activities, and direct health-promoting effects, which may alleviate oxidative stress and age-related diseases, including cardiovascular diseases or diabetes. The production of valuable microalgal metabolites can be modified by using abiotic stressors, such as light, salinity, nutrient availability, and xenobiotics (for instance, phytohormones).


Asunto(s)
Carotenoides , Microalgas , Carotenoides/farmacología , Carotenoides/metabolismo , Microalgas/metabolismo , beta Caroteno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Luteína/metabolismo
7.
Molecules ; 28(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36615433

RESUMEN

Heavy metal stress can lead to many adverse effects that inhibit cellular processes at various levels of metabolism, causing a decrease in plant productivity. In response to environmental stressors, phenolic compounds fulfill significant molecular and biochemical functions in plants. Increasing the biosynthesis of phenolic compounds in plants subjected to heavy metal stress helps protect plants from oxidative stress. A pot experiment was carried out to determine the effect of the accumulation of copper (Cu) and lead (Pb) salts at concentrations of 200, 500, and 1000 ppm on seed germination, the activity of enzymes in the phenylalanine ammonia-lyase pathway (PAL) and tyrosine ammonia-lyase (TAL), along with the total phenol and flavonoid contents in seedlings of hybrid Triticum aestivum L. (winter wheat) cultivars. The accumulation of heavy metals, especially Cu, had a negative impact on the seed germination process. The cultivar "Hyacinth" reacted most strongly to heavy metal stress, which was confirmed by obtaining the lowest values of the germination parameters. Heavy metal stress caused an increase in the activity of PAL and TAL enzymes and an increase in the accumulation of phenolic compounds. Under the influence of Cu, the highest activity was shown in cv. "Hyvento" (especially at 200 ppm) and, due to the accumulation of Pb, in cv. "Hyacinth" (1000 ppm) and cv. "Hyking" (200 ppm). The cultivar "Hyking" had the highest content of phenolic compounds, which did not increase with the application of higher concentrations of metals. In other cultivars, the highest content of total phenols and flavonoids was usually observed at the lowest concentration (200 ppm) of the tested heavy metals, Cu and Pb.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Triticum/metabolismo , Plomo/toxicidad , Plomo/metabolismo , Metales Pesados/metabolismo , Cobre/farmacología , Fenoles/metabolismo , Contaminantes del Suelo/metabolismo
8.
Molecules ; 26(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206525

RESUMEN

Oxidative stress has been reported as a cause of many diseases like Parkinson's, Alzheimer's, cardiovascular disease, and diabetes. Oxidative stress can also lead to cancer formation by promoting tumor development and progression. Antioxidants derived from Lamiaceae plants play an important role in natural medicine, pharmacology, cosmetology, and aromatherapy. Herein, we examine the antioxidative capacity of essential oils from seven aromatic Lamiaceae plants against the synthetic radicals DPPH and ABTS. Among the essential oils analyzed, the most robust scavenging capacities were found in mixtures of volatile compounds from thyme and savory. The scavenging activity of tested EOs against the ABTS radical was clearly higher than activity towards DPPH. Analysis of essential oils with weaker antioxidant activity has shown that volatile compounds from marjoram, sage, and hyssop were more active than EOs from lavender and mint. It can be suggested that the potent antioxidant capacity of thyme (Thymus vulgaris) and savory (Satyreja hortensis) are related to a high level of phenolic constituents, such as thymol and carvacrol. On the other hand, the elevated antioxidative power of marjoram, sage, and hyssop essential oils may also be due to their terpinene, o-cymene, terpinolene, and terpinen-4-ol constituents. Although non-phenolic components are less active than thymol or carvacrol, they may affect antioxidant capacity synergistically.


Asunto(s)
Antioxidantes/química , Lamiaceae/química , Aceites Volátiles/química
9.
Insects ; 12(4)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920675

RESUMEN

This study investigated the toxicity of essential oils (EOs) from Santolina chamaecyparissus (L.) and Tagetes patula (L.) towards the green peach aphid Myzus persicae (Sulzer) and the bird cherry-oat aphid Rhopalosiphum padi (L.). The effects of the EOs on aphid population parameters and levels of biochemical markers of oxidative stress within insect tissues were analyzed. In laboratory bioassays, application of the studied EOs at sublethal concentrations reduced daily fecundity and led to a decrease in the intrinsic rate of natural increase in both aphid species. Treatment with EOs also induced generation of reactive oxygen species (ROS) within aphid tissues. The highest levels of superoxide anion and hydrogen peroxide were noted after 24 and 48 h of exposure. Moreover, a significant increase in lipid peroxidation was shown in treated aphids, especially between 48 and 72 h after exposure. The increase was more pronounced after treatment with the essential oil of S. chamaecyparissus, which also exhibited higher aphicidal activity in toxicity tests. The activities of antioxidant enzymes-superoxide dismutase (SOD) and catalase (CAT)-were significantly elevated in both aphid species in response to the tested EOs. The obtained results suggest that oxidative stress evoked by treatment with the studied EOs may be an important factor determining their toxicity towards aphids.

10.
Biomed Pharmacother ; 133: 111053, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33378959

RESUMEN

Trastuzumab is considered to be a fundamental drug for treatment of breast cancer with Her-2 overexpression (Her-2 positive cells). Trastuzumab is a monoclonal antibody that targets the Her-2 receptor. Trastuzumab treatment used in breast cancer therapy require a visualization to validate their delivery and response. The objective of this study was to investigate Trastuzumab-dendrimer-fluorine drug delivery system by synthesis and characterization of a series of fluorinated dendrimers. MATERIALS AND METHODS: Trastuzumab-dendrimer-fluorine drug delivery system is a covalent attachment of Trastuzumab to fluorinated dendrimers. We design synthesis and evaluate main product by using electrophoresis, HPLC and LC-MS techniques. We prepared three-dimensional breast cancer cell culture in bioreactor device. For the cell culture we used MCF-7 cells with Her-2 overexpression to study Trastuzumab-dendrimer-fluorine drug delivery system efficacy. We evaluate efficacy by Magnetic Resonance Imaging (MRI) relaxation time. RESULTS: An analytical analysis showed that synthesis of Trastuzumab-dendrimer-fluorine drug delivery system is possible to obtain with a good yield. The results obtained indicated potential of Trastuzumab-dendrimer-fluorine drug delivery system is more efficient than trastuzumab alone. Chromatographic and electrophoretic separations showed that the synthetized conjugates were a Trastuzumab-dendrimer-fluorine drug delivery systems. The hight synthesis efficiency was found. The presence of molecules with lower masses than trastuzumab can have influence on efficiency. CONCLUSIONS: Trastuzumab-dendrimer-fluorine drug delivery system is a new form of Trastuzumab to treat breast cancer cells in vitro. Due to presence of 19F nuclei the system can be monitored by MRI measurements.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Dendrímeros/química , Portadores de Fármacos , Flúor/química , Trastuzumab/farmacología , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/metabolismo , Reactores Biológicos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Composición de Medicamentos , Femenino , Humanos , Células MCF-7 , Imagen por Resonancia Magnética , Trastuzumab/química , Trastuzumab/metabolismo
11.
Int J Mol Sci ; 21(19)2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33027901

RESUMEN

Secondary phenolic metabolites are defined as valuable natural products synthesized by different organisms that are not essential for growth and development. These compounds play an essential role in plant defense mechanisms and an important role in the pharmaceutical, cosmetics, food, and agricultural industries. Despite the vast chemical diversity of natural compounds, their content in plants is very low, and, as a consequence, this eliminates the possibility of the production of these interesting secondary metabolites from plants. Therefore, microorganisms are widely used as cell factories by industrial biotechnology, in the production of different non-native compounds. Among microorganisms commonly used in biotechnological applications, yeast are a prominent host for the diverse secondary metabolite biosynthetic pathways. Saccharomyces cerevisiae is often regarded as a better host organism for the heterologous production of phenolic compounds, particularly if the expression of different plant genes is necessary.


Asunto(s)
Productos Biológicos/metabolismo , Ingeniería Metabólica , Polifenoles/biosíntesis , Saccharomyces cerevisiae/genética , Vías Biosintéticas/genética , Biotecnología/métodos , Plantas/genética , Plantas/metabolismo , Polifenoles/genética
12.
Molecules ; 25(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936538

RESUMEN

Microalgae are freshwater and marine unicellular photosynthetic organisms that utilize sunlight to produce biomass. Due to fast microalgal growth rate and their unique biochemical profiles and potential applications in food and renewable energy industries, the interest in microalgal research is rapidly increasing. Biochemical and genetic engineering have been considered to improve microalgal biomass production but these manipulations also limited microalgal growth. The aim of the study was the biochemical characterization of recently identified microalgal strain Planktochlorella nurekis with elevated cell size and DNA levels compared to wild type strain that was achieved by a safe non-vector approach, namely co-treatment with colchicine and cytochalasin B (CC). A slight increase in growth rate was observed in twelve clones of CC-treated cells. For biochemical profiling, several parameters were considered, namely the content of proteins, amino acids, lipids, fatty acids, ß-glucans, chlorophylls, carotenoids, B vitamins and ash. CC-treated cells were characterized by elevated levels of lipids compared to unmodified cells. Moreover, the ratio of carotenoids to chlorophyll a and total antioxidant capacity were slightly increased in CC-treated cells. We suggest that Planktochlorella nurekis with modified DNA levels and improved lipid content can be considered to be used as a dietary supplement and biofuel feedstock.


Asunto(s)
Biomasa , ADN/química , Lípidos/genética , Microalgas/genética , Biocombustibles , Clorofila A/biosíntesis , Clorofila A/química , ADN/genética , Lípidos/biosíntesis , Lípidos/química , Microalgas/química , Microalgas/metabolismo , Fotosíntesis/genética
13.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31370193

RESUMEN

Prior experiments illustrated reactive oxygen species (ROS) overproduction in maize plants infested with bird-cherry-oat (Rhopalosiphum padi L.) aphids. However, there is no available data unveiling the impact of aphids feeding on oxidative damages of crucial macromolecules in maize tissues. Therefore, the purpose of the current study was to evaluate the scale of oxidative damages of genomic DNA, total RNA and mRNA, proteins, and lipids in seedling leaves of two maize genotypes (Zlota Karlowa and Waza cvs-susceptible and relatively resistant to the aphids, respectively). The content of oxidized guanosine residues (8-hydroxy-2'-deoxyguanosine; 8-OHdG) in genomic DNA, 8-hydroxyguanosine (8-OHG) in RNA molecules, protein carbonyl groups, total thiols (T-SH), protein-bound thiols (PB-SH), non-protein thiols (NP-SH), malondialdehyde (MDA) and electrolyte leakage (EL) levels in maze plants were determined. In addition, the electrical penetration graphs (EPG) technique was used to monitor and the aphid stylet positioning and feeding modes in the hosts. Maize seedlings were infested with 0 (control), 30 or 60 R. padi adult apterae per plant. Substantial increases in the levels of RNA, protein and lipid oxidation markers in response to aphid herbivory, but no significant oxidative damages of genomic DNA, were found. Alterations in the studied parameters were dependent on maize genotype, insect abundance and infestation time.


Asunto(s)
Áfidos/fisiología , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Parásitos/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Zea mays/genética , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Animales , Áfidos/patogenicidad , ADN de Plantas/genética , ADN de Plantas/metabolismo , Genotipo , Guanosina/análogos & derivados , Guanosina/metabolismo , Lípidos/química , Malondialdehído/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Hojas de la Planta/parasitología , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Plantones/genética , Plantones/parasitología , Compuestos de Sulfhidrilo/metabolismo , Zea mays/parasitología
14.
Nat Prod Res ; 33(24): 3587-3591, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29888957

RESUMEN

Analysis of Lamiaceae essential oils (EOs) by GC-FID-MS revealed the presence as the major constituents of linalool (16.8%), linalyl acetate (15.7%) in Lavandula angustifolia, menthol (29.0%), menthone (22.7%), menthyl acetate (19.2%) in Mentha x piperita, terpinen-4-ol (27.1%), (E)-sabinene hydrate (12.1%), γ-terpinene (10.0%) in Origanum majorana, α-thujone (19.5%), camphor (19.0%), viridiflorol (13.5%) in Salvia officinalis, thymol (61.9%), p-cymene (10.0%), γ-terpinene (10.0%) in Thymus vulgaris. Based on the MIC and MBC values (0.09-0.78 mg/mL) and ratio MBC/MIC showed that EO from T. vulgaris (TO) had the strong inhibitory and bactericidal effect against multidrug-resistant Staphylococcus aureus. The bacterial cells were total killed by TO at 2MIC concentration after 6 h. The higher concentrations of other EOs were needed to achieve bactericidal effects. The strong bactericidal effect of TO against these bacteria indicates the possibility of topical use of TO but it requires research under clinical conditions.


Asunto(s)
Antibacterianos/aislamiento & purificación , Resistencia a Múltiples Medicamentos , Lamiaceae/química , Aceites Volátiles/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Mentol/aislamiento & purificación , Mentol/farmacología , Pruebas de Sensibilidad Microbiana , Monoterpenos/aislamiento & purificación , Monoterpenos/farmacología , Aceites Volátiles/aislamiento & purificación , Staphylococcus aureus/fisiología , Terpenos/aislamiento & purificación , Terpenos/farmacología , Timol/aislamiento & purificación , Timol/farmacología , Thymus (Planta)/química
16.
Plant Physiol Biochem ; 118: 529-540, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28778044

RESUMEN

One of the earliest responses of plants to insects' attack is generation of reactive oxygen species. However, the elevated level of ROS can elicit oxidative burst within plant tissues, and plants employ antioxidant systems against these radicals. Due to their chemical structures, polyphenols are able to diminish the level of ROS. Thus, we investigated the role of phenolic compounds in oxidative stress within winter triticale caused by Sitobion avenae and Oulema melanopus. It was found, that infestation by insects induced a high increase in the content of hydrogen peroxide and superoxide anion radical within resistant Lamberto cv. 24 hpi, whereas in sensitive Marko cv., an increase in H2O2 content was found within two days of aphid feeding. Moreover, resistant plants showed earlier and much greater induction of l-phenylalanine and l-tyrosine ammonia lyases and chalcone synthase activities, as well as accumulation of phenolic compounds in response to insect feeding than susceptible Marko. On the other hand, strong positive influence of hydrogen peroxide and superoxide radical contents on chalcone synthase activity and furthermore flavonoid biosynthesis was detected in the susceptible cultivar. Negative relationships between level of o-coumaric acid or flavonoid compounds and content of hydrogen peroxide or superoxide radical suggest their antioxidant capacity. Luteolin and o-coumaric acid may attend in scavenging of hydrogen peroxide, whereas quercetin, apigenin and (+)-catechin probably participate in reduction of superoxide anion radical content.


Asunto(s)
Antioxidantes/metabolismo , Áfidos , Escarabajos , Fenoles/metabolismo , Triticale/metabolismo , Triticale/parasitología , Animales , Flavonoides/biosíntesis , Peróxido de Hidrógeno/metabolismo
17.
PLoS One ; 9(11): e111863, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25365518

RESUMEN

The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•-) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•- was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•- generation in comparison with the Tasty Sweet genotype.


Asunto(s)
Áfidos , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glutatión Transferasa/biosíntesis , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/biosíntesis , Plantones , Zea mays , Animales , Plantones/enzimología , Plantones/parasitología , Zea mays/enzimología , Zea mays/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA